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The speciation or chemical form of metals governs their fate, toxicity, mobility, and
bioavailability in contaminated soils, sediments and water. To assess these chemical
properties and to accurately gauge their impact on human health and the environment we
heed to characterize metals at the atomic level. To attain in situ atomic level information on
the speciation of metals we utilize high-energy synchrotron X-rays to probe chemical
structure. At the Advanced Photon Source (APS) of Argonne National Laboratory (Argonne,
IL) (Fig. 1), we incorporate X-ray absorption (XAS), X-ray fluorescence (XRF), and micro-
tomography spectroscopies to analyze environmental samples to determine the true, in situ
speciation of metal contaminants. Currently, several Divisions within NRMRL are assisting
in the development of EnviroCAT, a dedicated synchrotron radiation facility at the APS for
research on environmental science problems on a wide range of issues concerning
worldwide human welfare, spanning problems in both pure and applied science and
engineering. This innovative research tool is expanding our ability to directly identify the
role of metal speciation on many dynamic processes that influence risk. Several research

projects made possible by the application of synchrotron techniques are highlighted below. Y o= o 3 Argonne, IL.
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Fate of Arsenic During GW-SW Interactions at a Superfund Site

At this Superfund site, arsenic from a contaminated ground
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Zero-valent iron PBRs are used to reduce toxc

Chromium Speciation in Permeable Reactive Barriers (PBRs)
used for Groundwater Restoration

Cr(V) to Cr(lll) by reaction with iron. The (XANES Spectroscopy)

speciation and mechanism of Cr transformation ()
in the barriers however was unknown. To 7%
answer this question XANES was applied to
confirm the reduction of Cr{Vl) to Cr{lll) and i A 0"
study the mechanism of its transformation.
(Figure 1).
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Arsenic in lIronite®

What is the mineralogical form of arsenic in Ironite?

Arsenopyrite
lronite® is a common fertilizer made from mine
tailings available at any lawn and garden store.

The presence of heavy metals in lronite® has
resulted in its banning in Canada and lawsuits in
the United States due to the potential release of
heavy metals, most notably arsenic and lead,
from the fertilizer.
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Bioavailable arsenic released from lronite® is
dependent on its mineralogical form. Previous
work identified the arsenics bearing phase as

acorodite

[ronite - Ohio

[ronite - Florida

arsenopytrite, however, a closer look with EXAFS . . T T
has identified the arsenic phase within Ironite® as : 1 : Hadii A)
scorodite. Scorodite is more soluble than

drinking water standard. e
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Synchrofron microprobe techniques can map the elemental

Microprobe and p-EXAFS of Zinc Contaminated Sediment

composition of environmental materials at the micrometer scale
(Figures 1 and 2). This allows for both the physical relationship

best remediation strategies.
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Figure 3. u-EXAFRS of zine af points A and B (Figure 2)

Maval Warfare Cenfer showing the physical relationshio befween iron and and reference minerals. Point A 15 identified as
zinc. The profiles represent the same 120 x 120 um area with brighter colors smithsonite, point B 15 closest to ZnfOH], lkely a

Lead Release from Pipe Scales in Washington DC

- _ - X As a result of changing water disinfectants lead pipes in DC, previously
Figure 1. Washington DC lead protected by layers of corrosion, were made soluble due to changing Eh-
pH conditions (Figure 1). XANES was used to study the mechanism of

ipes with corrosion jlavers
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lead release by determining lead speciation (Figure 2).
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